Data & AIVery High

ML Engineer

Put machine learning models into production with scalable and reliable infrastructure.

Salaire
60K - 110K EUR
Demande
Very High
Compétences clés
5
Mis à jour
Feb 2026

ML Engineer

The ML Engineer bridges the gap between data science and production engineering. As companies move from ML experiments to production systems, the demand for engineers who can deploy, scale, and maintain ML models has skyrocketed. With GenAI requiring massive infrastructure, ML Engineers who understand both the science and the engineering are commanding top salaries across Europe and the US.

Compétences

Python
MLOps
Cloud ML
Docker
Data Pipelines

Optimisation LinkedIn

  1. 1

    Show experience with model deployment at scale

  2. 2

    Highlight projects with real production metrics

  3. 3

    Post about MLOps trends and best practices

  4. 4

    Connect with ML leads at target companies

  5. 5

    Mention specific ML infrastructure you've built

CV et Curriculum

  1. 1

    Quantify: "Deployed model serving 1M predictions/day"

  2. 2

    Detail ML infrastructure and pipeline experience

  3. 3

    Show end-to-end ML lifecycle management

  4. 4

    Include monitoring and model drift detection experience

  5. 5

    Highlight experience with feature stores and experiment tracking

Stratégie d'Outreach

  1. 1

    Research what ML infrastructure the company uses

  2. 2

    Mention specific ML challenges you can help solve

  3. 3

    Share a case study of ML deployment at scale

  4. 4

    Connect with ML engineers already at the company

  5. 5

    Demonstrate understanding of MLOps best practices

Préparation d'Entretiens

  1. 1

    Prepare ML system design scenarios

  2. 2

    Know the full ML lifecycle from training to monitoring

  3. 3

    Practice explaining trade-offs in model serving architectures

  4. 4

    Have examples of debugging production ML systems

Une journée en tant que ML Engineer

Review model performance dashboards, optimize inference latency, build and maintain ML pipelines, collaborate with data scientists on model deployment, work on feature engineering and experiment infrastructure.

Parcours de Carrière

Junior ML Engineer
Mid ML Engineer
Senior ML Engineer
Staff ML Engineer
Head of ML Engineering
VP of AI Infrastructure

Erreurs courantes

  • Only showing research projects without production experience

  • Not mentioning infrastructure and deployment skills

  • Ignoring monitoring and observability in your profile

  • Not having cloud ML platform experience

  • Forgetting to mention collaboration with data scientists

Outils essentiels

PythonKubeflowMLflowSageMakerVertex AIAirflowRay

Questions fréquentes

Salaire moyen d'un/e ML Engineer?

Le salaire moyen d'un/e ML Engineer en Europe se situe entre 60K - 110K EUR. Cela varie selon l'expérience, la localisation et le type d'entreprise.

Compétences clés pour un/e ML Engineer?

Principales compétences techniques : Python, MLOps, Cloud ML, Docker, Data Pipelines. Les soft skills comme la communication et le travail d'équipe sont tout aussi importants.

Parcours de carrière d'un/e ML Engineer?

Parcours typique : Junior ML Engineer > Mid ML Engineer > Senior ML Engineer > Staff ML Engineer > Head of ML Engineering > VP of AI Infrastructure.

ML Engineer

Soumettez votre profil pour examen. J'étudie personnellement chaque candidature. Si vous êtes qualifié, je vous contacterai avec une analyse détaillée et votre plan d'optimisation personnalisé.

Rôles liés